Bibliography

[1] J. D. Achter and R. Tamassia, "Selected topics in algorithms." Manuscript, 1993.
[2] G. M. Adel'son-Vel'skii and Y. M. Landis, "An algorithm for the organization of information," Doklady Akademii Nauk SSSR, vol. 146, pp. 263-266, 1962. English translation in Soviet Math. Dokl., 3, 1259-1262.
[3] P. K. Agarwal, "Geometric partitioning and its applications," in Computational Geometry: Papers from the DIMACS Special Year (J. E. Goodman, R. Pollack, and W. Steiger, eds.), American Mathematical Society, 1991.
[4] P. K. Agarwal, "Range searching," in Handbook of Discrete and Computational Geometry (J. E. Goodman and J. O’Rourke, eds.), ch. 31, pp. 575-598, Boca Raton, FL: CRC Press LLC, 1997.
[5] P. K. Agarwal, L. Arge, and K. Yi, "I/O-efficient batched union-find and its applications to terrain analysis," ACM Trans. Algorithms, vol. 7, no. 1, pp. 11:1-11:21, 2010.
[6] A. Aggarwal and J. S. Vitter, "The input/output complexity of sorting and related problems," Comm. ACM, vol. 31, pp. 1116-1127, 1988.
[7] A. V. Aho, "Algorithms for finding patterns in strings," in Handbook of Theoretical Computer Science (J. van Leeuwen, ed.), vol. A. Algorithms and Complexity, pp. 255-300, Amsterdam: Elsevier, 1990.
[8] A. V. Aho, J. E. Hopcroft, and J. D. Ullman, The Design and Analysis of Computer Algorithms. Reading, MA: Addison-Wesley, 1974.
[9] A. V. Aho, J. E. Hopcroft, and J. D. Ullman, Data Structures and Algorithms. Reading, MA: Addison-Wesley, 1983.
[10] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin, Network Flows: Theory, Algorithms, and Applications. Englewood Cliffs, NJ: Prentice Hall, 1993.
[11] S. Alstrup, I. Li Gortz, T. Rauhe, M. Thorup, and U. Zwick, "Union-find with constant time deletions," in Automata, Languages and Programming (L. Caires, G. Italiano, L. Monteiro, C. Palamidessi, and M. Yung, eds.), vol. 3580 of Lecture Notes in Computer Science, pp. 105105, Springer, 2005.
[12] L. Arge and J. S. Vitter, "Optimal external memory interval management," SIAM Journal on Computing, vol. 32, no. 6, pp. 1488-1508, 2003.
[13] B. Arkin, F. Hill, S. Marks, M. Schmid, T. J. Walls, and G. McGraw, "How we learned to cheat at online poker: A study in software security," Developer.com: Tech Focus, September 1999.
[14] K. Arnold and J. Gosling, The Java Programming Language. The Java Series, Reading, MA: Addison-Wesley, 1996.
[15] S. Arya and D. M. Mount, "Approximate range searching," Comput. Geom. Theory Appl., vol. 17, pp. 135-152, 2000.
[16] S. Arya, D. M. Mount, N. S. Netanyahu, R. Silverman, and A. Wu, "An optimal algorithm for approximate nearest neighbor searching in fixed dimensions," J. ACM, vol. 45, pp. 891-923, 1998.
[17] F. Aurenhammer, "Voronoi diagrams: A survey of a fundamental geometric data structure," ACM Comput. Surv., vol. 23, pp. 345-405, Sept. 1991.
[18] S. Baase, Computer Algorithms: Introduction to Design and Analysis. Reading, MA: AddisonWesley, 2nd ed., 1988.
[19] E. Bach and J. Shallit, Algorithmic Number Theory, Volume I: Efficient Algorithms. MIT Press, 1996.
[20] R. Baeza-Yates and B. Ribeiro-Neto, Modern Information Retrieval. Reading, MA: AddisonWesley, 1999.
[21] O. Baruvka, "O jistem problemu minimalnim," Praca Moravske Prirodovedecke Spolecnosti, vol. 3, pp. 37-58, 1926. (In Czech).
[22] R. Bayer, "Symmetric binary B-trees: Data structure and maintenance," Acta Informatica, vol. 1, no. 4, pp. 290-306, 1972.
[23] R. Bayer and McCreight, "Organization of large ordered indexes," Acta Inform., vol. 1, pp. 173-189, 1972.
[24] R. Bellman, "On a routing problem," Quarterly of Applied Mathematics, vol. 16, no. 1, pp. 8790, 1958.
[25] R. E. Bellman, Dynamic Programming. Princeton, NJ: Princeton University Press, 1957.
[26] J. Bentley, "Programming pearls: Algorithm design techniques," Commиn. ACM, vol. 27, pp. 865-873, September 1984.
[27] J. L. Bentley, "Multidimensional divide-and-conquer," Comm. ACM, vol. 23, no. 4, pp. 214 229, 1980.
[28] J. L. Bentley, "Programming pearls: Writing correct programs," Comm. ACM, vol. 26, pp. 1040-1045, 1983.
[29] J. L. Bentley, "Programming pearls: Thanks, heaps," Comm. ACM, vol. 28, pp. 245-250, 1985.
[30] J. L. Bentley, D. Haken, and J. B. Saxe, "A general method for solving divide-and-conquer recurrences," SIGACT News, vol. 12, no. 3, pp. 36-44, 1980.
[31] J. L. Bentley and T. A. Ottmann, "Algorithms for reporting and counting geometric intersections," IEEE Trans. Comput., vol. C-28, pp. 643-647, Sept. 1979.
[32] M. d. Berg, O. Cheong, M. v. Kreveld, and M. Overmars, Computational Geometry: Algorithms and Applications. Springer-Verlag TELOS, 3rd ed., 2008.
[33] G. Booch, Object-Oriented Analysis and Design with Applications. Redwood City, CA: Benjamin/Cummings, 1994.
[34] A. Borodin and R. El-Yaniv, Online Computation and Competitive Analysis. New York: Cambridge University Press, 1998.
[35] R. S. Boyer and J. S. Moore, "A fast string searching algorithm," Comm. ACM, vol. 20, no. 10, pp. 762-772, 1977.
[36] G. Brassard, "Crusade for a better notation," SIGACT News, vol. 17, no. 1, pp. 60-64, 1985.
[37] G. Brassard and P. Bratley, Fundamentals of Algorithmics. Englewood Cliffs, NJ: Prentice Hall, 1996.
[38] D. Bressoud and S. Wagon, A Course in Computational Number Theory. Key College Publishing, 2000.
[39] E. O. Brigham, The Fast Fourier Transform. Englewood Cliffs, NJ: Prentice-Hall, 1974.
[40] T. Budd, An Introduction to Object-Oriented Programming. Reading, MA: Addison-Wesley, 1991.
[41] S. Carlsson, "Average case results on heapsort," BIT, vol. 27, pp. 2-17, 1987.
[42] J. L. Carter and M. N. Wegman, "Universal classes of hash functions," Journal of Computer and System Sciences, vol. 18, pp. 143-54, 1979.
[43] N. Christofides, "Worst-case analysis of a new heuristic for the traveling salesman problem," in Sympos. on New Directions and Recent Results in Algorithms and Complexity (J. F. Traub, ed.), (New York, NY), p. 441, Academic Press, 1976.
[44] V. Chvátal, "A greedy heuristic for the set-covering problem," Math. Oper. Res., vol. 4, pp. 233-235, 1979.
[45] K. L. Clarkson, "Linear programming in $O\left(n 3^{d^{2}}\right)$ time," Inform. Process. Lett., vol. 22, pp. 21-24, 1986.
[46] R. Cole, "Tight bounds on the complexity of the Boyer-Moore pattern matching algorithm," SIAM Journal on Computing, vol. 23, no. 5, pp. 1075-1091, 1994.
[47] D. Comer, "The ubiquitous B-tree," ACM Comput. Surv., vol. 11, pp. 121-137, 1979.
[48] S. Cook, "The complexity of theorem proving procedures," in 30th ACM Symp. on Theory of Computing, pp. 151-158, 1971.
[49] J. W. Cooley and J. W. Tukey, "An algorithm for the machine calculation of complex Fourier series," Mathematics of Computation, vol. 19, no. 90, pp. 297-301, 1965.
[50] T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to Algorithms. Cambridge, MA: MIT Press, 1990.
[51] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to Algorithms. Cambridge, MA: MIT Press, 2nd ed., 2001.
[52] M. Crochemore and T. Lecroq, "Pattern matching and text compression algorithms," in The Computer Science and Engineering Handbook (A. B. Tucker, Jr., ed.), ch. 8, pp. 162-202, CRC Press, 1997.
[53] J. Culberson and J. Munro, "Analysis of the standard deletion algorithms in exact fit domain binary search trees," Algorithmica, vol. 5, pp. 295-311, 1990.
[54] G. B. Dantzig, Linear Programming and Extensions. Princeton, NJ: Princeton University Press, 1963.
[55] G. Di Battista, P. Eades, R. Tamassia, and I. G. Tollis, Graph Drawing: Algorithms for Geometric Representations of Graphs. Englewood Cliffs, NJ: Prentice Hall, 1998.
[56] E. W. Dijkstra, "A note on two problems in connexion with graphs," Numerische Mathematik, vol. 1, pp. 269-271, 1959.
[57] M. B. Dillencourt, H. Samet, and M. Tamminen, "A general approach to connectedcomponent labeling for arbitrary image representations," J. ACM, vol. 39, pp. 253-280, Apr. 1992.
[58] J. R. Driscoll, H. N. Gabow, R. Shrairaman, and R. E. Tarjan, "Relaxed heaps: An alternative to Fibonacci heaps with applications to parallel computation.," Comm. ACM, vol. 31, pp. 1343-1354, 1988.
[59] R. Durstenfeld, "Algorithm 235: Random permutation," Commun. ACM, vol. 7, p. 420, July 1964.
[60] D. Easley and J. Kleinberg, Networks, Crowds, and Markets: Reasoning about a Highly Connected World. Cambridge University Press, 2010.
[61] H. Edelsbrunner, "A note on dynamic range searching," Bull. EATCS, vol. 15, pp. 34-40, 1981.
[62] H. Edelsbrunner, Algorithms in Combinatorial Geometry, vol. 10 of EATCS Monographs on Theoretical Computer Science. Heidelberg, West Germany: Springer-Verlag, 1987.
[63] J. Edmonds, "Matroids and the greedy algorithm," Mathematical Programming, vol. 1, pp. 126-136, 1971.
[64] J. Edmonds and R. M. Karp, "Theoretical improvements in the algorithmic efficiency for network flow problems," Journal of the ACM, vol. 19, pp. 248-264, 1972.
[65] D. F. Elliott and K. R. Rao, Fast Transform Algorithms, Analyses, and Applications. New York: Academic Press, 1982.
[66] I. Z. Emiris and V. Y. Pan, "Applications of FFT," in Algorithms and Theory of Computation Handbook (M. J. Atallah, ed.), ch. 17, pp. 17-1-17-30, CRC Press, 1999.
[67] D. Eppstein, "Linear probing made easy." http://11011110.livejournal.com/232567.html.
[68] S. Even, Graph algorithms. Cambridge University Press, 2nd ed., 2012.
[69] R. Fagin, J. Nievergelt, N. Pippenger, and H. R. Strong, "Extendible hashing-a fast access method for dynamic files," ACM Trans. Database Syst., vol. 4, pp. 315-344, Sept. 1979.
[70] M. J. Fischer and M. S. Paterson, "String-matching and other products," tech. rep., Cambridge, MA, 1974.
[71] R. Fisher, F. Yates, et al., Statistical tables for biological, agricultural and medical research. Oliver and Boyd, Edinburgh, 3rd ed., 1949.
[72] R. W. Floyd, "Algorithm 97: Shortest path," Comm. ACM, vol. 5, no. 6, p. 345, 1962.
[73] R. W. Floyd, "Algorithm 245: Treesort 3," Comm. ACM, vol. 7, no. 12, p. 701, 1964.
[74] L. R. Ford, Jr. and D. R. Fulkerson, Flows in Networks. Princeton, NJ: Princeton University Press, 1962.
[75] G. N. Frederickson, "Scheduling unit-time tasks with integer release times and deadlines," Information Processing Letters, vol. 16, no. 4, pp. 171-173, 1983.
[76] M. L. Fredman and R. E. Tarjan, "Fibonacci heaps and their uses in improved network optimization algorithms," J. ACM, vol. 34, pp. 596-615, 1987.
[77] H. Gabow and R. Tarjan, "A linear time algorithm for a special case of disjoint set union," J. Comput. Syst. Sci., vol. 30, pp. 209-221, 1985.
[78] D. Gale and L. Shapley, "College admissions and the stability of marriage," The American Mathematical Monthly, vol. 69, no. 1, pp. 9-15, 1962.
[79] T. E. Gamal, "A public key cryptosystem and a signature scheme based on discrete logarithms," IEEE Transactions on Information Theory, vol. IT-31, no. 4, pp. 469-472, 1985.
[80] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness. New York, NY: W. H. Freeman, 1979.
[81] A. M. Gibbons, Algorithmic Graph Theory. Cambridge, UK: Cambridge University Press, 1985.
[82] S. S. Godbole, "On efficient computation of matrix chain products," IEEE Transactions on Computers, vol. C-22, no. 9, pp. 864-866, 1973.
[83] A. Goldberg and D. Robson, Smalltalk-80: The Language. Reading, MA: Addison-Wesley, 1989.
[84] S. Golomb and L. Baumert, "Backtrack programming," Journal of the ACM, vol. 12, pp. 516524, 1965.
[85] G. H. Gonnet and R. Baeza-Yates, Handbook of Algorithms and Data Structures in Pascal and C. Reading, MA: Addison-Wesley, 1991.
[86] G. H. Gonnet and J. I. Munro, "Heaps on heaps," SIAM Journal on Computing, vol. 15, no. 4, pp. 964-971, 1986.
[87] J. E. Goodman and J. O’Rourke, eds., Handbook of Discrete and Computational Geometry. CRC Press LLC, 1997.
[88] M. T. Goodrich, "Parallel algorithms in geometry," in Handbook of Discrete and Computational Geometry (J. E. Goodman and J. O’Rourke, eds.), ch. 36, pp. 669-682, Boca Raton, FL: CRC Press LLC, 1997.
[89] M. T. Goodrich, M. Handy, B. Hudson, and R. Tamassia, "Accessing the internal organization of data structures in the JDSL library," in Proc. Workshop on Algorithm Engineering and Experimentation (M. T. Goodrich and C. C. McGeoch, eds.), vol. 1619 of Lecture Notes Comput. Sci., pp. 124-139, Springer-Verlag, 1999.
[90] M. T. Goodrich, J.-J. Tsay, D. E. Vengroff, and J. S. Vitter, "External-memory computational geometry," in Proc. 34th Annu. IEEE Sympos. Found. Comput. Sci., pp. 714-723, 1993.
[91] R. L. Graham, "An efficient algorithm for determining the convex hull of a finite planar set," Inform. Process. Lett., vol. 1, pp. 132-133, 1972.
[92] R. L. Graham and P. Hell, "On the history of the minimum spanning tree problem," Annals of the History of Computing, vol. 7, no. 1, pp. 43-57, 1985.
[93] R. L. Graham, D. E. Knuth, and O. Patashnik, Concrete Mathematics. Reading, MA: AddisonWesley, 1989.
[94] L. J. Guibas and R. Sedgewick, "A dichromatic framework for balanced trees," in IEEE Symp. Foundations of Computer Science (FOCS), pp. 8-21, 1978.
[95] Y. Gurevich, "What does $O(n)$ mean?," SIGACT News, vol. 17, no. 4, pp. 61-63, 1986.
[96] B. Haeupler, S. Sen, and R. Tarjan, "Rank-balanced trees," in Algorithms and Data Structures (F. Dehne, M. Gavrilova, J. Sack, and C. Toth, eds.), vol. 5664 of LNCS, pp. 351-362, Springer, 2009.
[97] N. J. Higham, "The accuracy of floating point summation," SIAM Journal on Scientific Computing, vol. 14, no. 4, pp. 783-799, 1993.
[98] K. Hinrichs, J. Nievergelt, and P. Schorn, "Plane-sweep solves the closest pair problem elegantly," Inform. Process. Lett., vol. 26, pp. 255-261, 1988.
[99] D. S. Hirchsberg, "A linear space algorithm for computing maximal common subsequences," Comm. ACM, vol. 18, no. 6, pp. 341-343, 1975.
[100] C. A. R. Hoare, "Quicksort," The Computer Journal, vol. 5, pp. 10-15, 1962.
[101] D. Hochbaum (ed.), Approximation Algorithms for NP-Hard Problems. Boston: PWS Publishers, 1996.
[102] J. E. Hopcroft and R. E. Tarjan, "Efficient algorithms for graph manipulation," Comm. ACM, vol. 16, no. 6, pp. 372-378, 1973
[103] J. E. Hopcroft and J. D. Ullman, "Set merging algorithms," SIAM Journal on Computing, vol. 2, no. 4, pp. 294-303, 1979.
[104] T. C. Hu, Combinatorial Algorithms. Reading, MA: Addison-Wesley, 1981.
[105] T. C. Hu and M. T. Shing, "Computations of matrix chain products, part i," SIAM Journal on Computing, vol. 11, no. 2, pp. 362-373, 1982.
[106] T. C. Hu and M. T. Shing, "Computations of matrix chain products, part ii," SIAM Journal on Computing, vol. 13, no. 2, pp. 228-251, 1984.
[107] B. Huang and M. Langston, "Practical in-place merging," Comm. ACM, vol. 31, no. 3, pp. 348352, 1988.
[108] D. A. Huffman, "A method for the construction of minimum-redundancy codes," Proceedings of the IRE, vol. 40, no. 9, pp. 1098-1101, 1952.
[109] O. H. Ibarra and C. E. Kim, "Fast approximation algorithms for the knapsack and sum of subset problems," Journal of the ACM, vol. 9, pp. 463-468, 1975.
[110] J. JáJá, An Introduction to Parallel Algorithms. Reading, MA: Addison-Wesley, 1992.
[111] V. Jarnik, "O jistem problemu minimalnim," Praca Moravske Prirodovedecke Spolecnosti, vol. 6, pp. 57-63, 1930. (in Czech).
[112] D. S. Johnson, "Approximation algorithms for combinatorial problems," J. Comput. Syst. Sci., vol. 9, pp. 256-278, 1974.
[113] M. Johnston, "Spike: AI scheduling for NASA's Hubble Space Telescope," in 6th Conf. on Artificial Intelligence Applications, pp. 184-190, may 1990.
[114] R. E. Jones, Garbage Collection: Algorithms for Automatic Dynamic Memory Management. John Wiley and Sons, 1996.
[115] M.-Y. Kao and J. Wang, "Efficient minimization of numerical summation errors," in Automata, Languages and Programming (K. Larsen, S. Skyum, and G. Winskel, eds.), vol. 1443 of Lecture Notes in Computer Science, pp. 375-386, Springer, 1998.
[116] H. Kaplan, N. Shafrir, and R. E. Tarjan, "Union-find with deletions," in 19th ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 19-28, 2002.
[117] A. Karatsuba and Y. Ofman, "Multiplication of multidigit numbers on automata," Doklady Akademii Nauk SSSR, vol. 145, pp. 293-294, 1962. (In Russian).
[118] D. R. Karger, "Global min-cuts in RNC, and other ramifications of a simple min-cut algorithm," in Proc. ACM-SIAM Symp. on Discrete Algorithms (SODA), pp. 21-30, 1993.
[119] D. R. Karger, P. Klein, and R. E. Tarjan, "A randomized linear-time algorithm to find minimum spanning trees," Journal of the ACM, vol. 42, pp. 321-328, 1995.
[120] D. R. Karger and C. Stein, "A new approach to the minimum cut problem," J. ACM, vol. 43, no. 4, pp. 601-640, 1996.
[121] N. Karmarkar, "A new polynomial-time algorithm for linear programming," Combinatorica, vol. 4, pp. 373-395, 1984.
[122] R. Karp, "Reducibility among combinatorical problems of computer computations," in Complexity of Computer Computations (E. Miller and J. W. Thatcher, eds.), pp. 88-104, New York: Plenum Press, 1972.
[123] R. M. Karp and M. O. Rabin, "Efficient randomized pattern-matching algorithms," IBM Journal of Research and Development, vol. 31, pp. 249-260, March 1987.
[124] R. M. Karp and V. Ramachandran, "Parallel algorithms for shared memory machines," in Handbook of Theoretical Computer Science (J. van Leeuwen, ed.), pp. 869-941, Amsterdam: Elsevier/The MIT Press, 1990.
[125] L. G. Khachiyan, "Polynomial algorithm in linear programming," U.S.S.R. Comput. Math. and Math. Phys., vol. 20, pp. 53-72, 1980.
[126] P. Kirschenhofer and H. Prodinger, "The path length of random skip lists," Acta Informatica, vol. 31, pp. 775-792, 1994.
[127] P. N. Klein and N. E. Young, "Approximation algorithms," in Algorithms and Theory of Computation Handbook (M. J. Atallah, ed.), ch. 34, pp. 34-1-34-19, CRC Press, 1999.
[128] D. E. Knuth, "Big omicron and big omega and big theta," in SIGACT News, vol. 8, pp. 18-24, 1976.
[129] D. E. Knuth, Fundamental Algorithms, vol. 1 of The Art of Computer Programming. Reading, MA: Addison-Wesley, 3rd ed., 1997.
[130] D. E. Knuth, Seminumerical Algorithms, vol. 2 of The Art of Computer Programming. Reading, MA: Addison-Wesley, 3rd ed., 1998.
[131] D. E. Knuth, Sorting and Searching, vol. 3 of The Art of Computer Programming. Reading, MA: Addison-Wesley, 2nd ed., 1998.
[132] D. E. Knuth, J. H. Morris, Jr., and V. R. Pratt, "Fast pattern matching in strings," SIAM Journal on Computing, vol. 6, no. 1, pp. 323-350, 1977.
[133] N. Koblitz, A Course in Number Theory and Cryptography. Springer-Verlag, 1987.
[134] E. Koutsoupias and C. H. Papadimitriou, "On the k-server conjecture," Journal of the ACM, vol. 42, no. 5, pp. 971-983, 1995.
[135] D. C. Kozen, The design and analysis of algorithms. New York: Springer-Verlag New York, Inc., 1992.
[136] E. Kranakis, Primality and Cryptography. John Wiley and Sons, 1986.
[137] J. B. Kruskal, Jr., "On the shortest spanning subtree of a graph and the traveling salesman problem," Proc. Amer. Math. Soc., vol. 7, pp. 48-50, 1956.
[138] H. T. Kung, F. Luccio, and F. P. Preparata, "On finding the maxima of a set of vectors," J. ACM, vol. 22, pp. 469-476, 1975.
[139] D. T. Lee, "Computational geometry," in The Computer Science and Engineering Handbook (A. B. Tucker, Jr., ed.), ch. 6, pp. 111-140, CRC Press, 1997.
[140] D. T. Lee and F. P. Preparata, "Computational geometry: a survey," IEEE Trans. Comput., vol. C-33, pp. 1072-1101, 1984.
[141] L. A. Levin, "Universal sorting problems," Problemy Peredachi Informatsii, vol. 9, no. 3, pp. 265-266, 1973. (In Russian).
[142] R. Levisse, "Some lessons drawn from the history of the binary search algorithm," The Computer Journal, vol. 26, pp. 154-163, 1983.
[143] H. R. Lewis and C. H. Papadimitriou, Elements of the Theory of Computation. Upper Saddle River, NJ: Prentice-Hall, 2nd ed., 1998.
[144] B. Liskov and J. Guttag, Abstraction and Specification in Program Development. Cambridge, MA/New York: The MIT Press/McGraw-Hill, 1986.
[145] W. Litwin, "Linear hashing: a new tool for file and table addressing," in 6th Int. Conf. on Very Large Data Bases (VLDB), (Montreal), pp. 212-223, October 1980.
[146] L. Lovász, "On the ratio of optimal integral and fractional covers," Discrete Math., vol. 13, pp. 383-390, 1975.
[147] J. Matoušek, "Geometric range searching," ACM Comput. Surv., vol. 26, pp. 421-461, 1994.
[148] E. M. McCreight, "A space-economical suffix tree construction algorithm," Journal of Algorithms, vol. 23, no. 2, pp. 262-272, 1976.
[149] E. M. McCreight, "Priority search trees," SIAM J. Comput., vol. 14, no. 2, pp. 257-276, 1985.
[150] C. J. H. McDiarmid and B. A. Reed, "Building heaps fast," Journal of Algorithms, vol. 10, no. 3, pp. 352-365, 1989.
[151] C. C. McGeoch, "Analyzing algorithms by simulation: Variance reduction techniques and simulation speedups," ACM Computing Surveys, vol. 24, no. 2, pp. 195-212, 1992.
[152] C. C. McGeoch, "Toward an experimental method for algorithm simulation," INFORMS Journal on Computing, vol. 8, no. 1, pp. 1-15, 1996.
[153] C. C. McGeoch, D. Precup, and P. R. Cohen, "How to find the Big-Oh of your data set (and how not to)," in Advances in Intelligent Data Analysis, vol. 1280 of Lecture Notes in Computer Science, pp. 41-52, Springer-Verlag, 1997.
[154] N. Megiddo, "Linear-time algorithms for linear programming in R^{3} and related problems," SIAM J. Comput., vol. 12, pp. 759-776, 1983.
[155] N. Megiddo, "Linear programming in linear time when the dimension is fixed," J. ACM, vol. 31, pp. 114-127, 1984.
[156] K. Mehlhorn, "A best possible bound for the weighted path length of binary search trees," SIAM Journal on Computing, vol. 6, no. 2, pp. 235-239, 1977
[157] K. Mehlhorn, Data Structures and Algorithms 1: Sorting and Searching, vol. 1 of EATCS Monographs on Theoretical Computer Science. Heidelberg, Germany: Springer-Verlag, 1984.
[158] K. Mehlhorn, Data Structures and Algorithms 2: Graph Algorithms and NP-Completeness, vol. 2 of EATCS Monographs on Theoretical Computer Science. Heidelberg, Germany: Springer-Verlag, 1984.
[159] K. Mehlhorn, Data Structures and Algorithms 3: Multi-dimensional Searching and Computational Geometry, vol. 3 of EATCS Monographs on Theoretical Computer Science. Heidelberg, Germany: Springer-Verlag, 1984.
[160] K. Mehlhorn and A. Tsakalidis, "Data structures," in Handbook of Theoretical Computer Science (J. van Leeuwen, ed.), vol. A. Algorithms and Complexity, pp. 301-341, Amsterdam: Elsevier, 1990.
[161] D. R. Morrison, "PATRICIA—practical algorithm to retrieve information coded in alphanumeric," Journal of the ACM, vol. 15, no. 4, pp. 514-534, 1968.
[162] R. Motwani and P. Raghavan, Randomized Algorithms. New York: Cambridge University Press, 1995.
[163] D. R. Musser and A. Saini, STL Tutorial and Reference Guide: C++ Programming with the Standard Template Library. Reading, MA: Addison-Wesley, 1996.
[164] R. Neapolitan and K. Naimipour, Foundations of Algorithms Using C++ Pseudocode. Boston: Jones and Bartlett Publishers, 1998.
[165] J. O’Rourke, Computational Geometry in C. Cambridge University Press, 1994.
[166] J. Pach, ed., New Trends in Discrete and Computational Geometry, vol. 10 of Algorithms and Combinatorics. Springer-Verlag, 1993.
[167] R. Pagh and F. Rodler, "Cuckoo hashing," Journal of Algorithms, vol. 52, pp. 122-144, 2004.
[168] T. Papadakis, J. I. Munro, and P. V. Poblete, "Average search and update costs in skip lists," BIT, vol. 32, pp. 316-332, 1992.
[169] C. H. Papadimitriou and K. Steiglitz, "Some complexity results for the traveling salesman problem," in Proc. 8th Annu. ACM Sympos. Theory Comput., pp. 1-9, 1976.
[170] C. H. Papadimitriou and K. Steiglitz, Combinatorial Optimization: Algorithms and Complexity. Englewood Cliffs, NJ: Prentice Hall, 1982.
[171] M. Patrascu and M. Thorup, "The power of simple tabulation hashing," in 43rd ACM Symp. on Theory of Computing (STOC), pp. 1-10, 2011.
[172] P. V. Poblete, J. I. Munro, and T. Papadakis, "The binomial transform and its application to the analysis of skip lists," in Proceedings of the European Symposium on Algorithms (ESA), pp. 554-569, 1995.
[173] F. P. Preparata and M. I. Shamos, Computational Geometry: An Introduction. Springer-Verlag, 3rd ed., Oct. 1990.
[174] R. C. Prim, "Shortest connection networks and some generalizations," Bell Syst. Tech. J., vol. 36, pp. 1389-1401, 1957.
[175] W. Pugh, "Skip lists: a probabilistic alternative to balanced trees," Communications of the ACM, vol. 33, no. 6, pp. 668-676, 1990.
[176] M. Raab and A. Steger, ""balls into bins" - a simple and tight analysis," in Randomization and Approximation Techniques in Computer Science (RANDOM) (M. Luby, J. Rolim, and M. Serna, eds.), vol. 1518 of LNCS, pp. 159-170, Springer, 1998.
[177] M. O. Rabin, "A probabilistic algorithm for testing primality," Journal of Number Theory, vol. 12, 1980
[178] R. L. Rivest, A. Shamir, and L. Adleman, "A method for obtaining digital signatures and public-key cryptosystems," Communications of the ACM, vol. 21, no. 2, pp. 120-126, 1978.
[179] D. J. Rosenkrantz, R. E. Stearns, and P. M. Lewis, "An analysis of several heuristics for the traveling salesman problem," SIAM J. on Computing, vol. 6, pp. 563-581, 1977.
[180] H. Sackrowitz, "Refining the point(s)-after-touchdown decision," Chance, vol. 13, no. 3, pp. 29-34, 2000.
[181] H. Samet, Applications of Spatial Data Structures: Computer Graphics, Image Processing, and GIS. Reading, MA: Addison-Wesley, 1990.
[182] H. Samet, The Design and Analysis of Spatial Data Structures. Reading, MA: AddisonWesley, 1990.
[183] D. Sankoff and J. B. Kruskal, Time Warps, String Edits, and Macromolecules: The Theory and Practice of Sequence Comparison. Addison-Wesley, 1983.
[184] J. E. Savage, Models of Computation: Exploring the Power of Computing. Addison-Wesley, 1998.
[185] R. Schaffer and R. Sedgewick, "The analysis of heapsort," Journal of Algorithms, vol. 15, no. 1, pp. 76-100, 1993.
[186] A. Schönhage and V. Strassen, "Schnelle multiplikation grosser zahlen," Computing, vol. 7, pp. 281-292, 1971.
[187] B. L. Schwartz, "Possible winners in partially completed tournaments," SIAM Review, vol. 8, no. 3, pp. 302-308, 1966.
[188] R. Sedgewick, Algorithms. Reading, MA: Addison-Wesley, 1st ed., 1983.
[189] R. Sedgewick, Algorithms in C++. Reading, MA: Addison-Wesley, 1992.
[190] R. Sedgewick and P. Flajolet, An Introduction to the Analysis of Algorithms. Reading, MA: Addison-Wesley, 1996.
[191] R. Seidel and C. Aragon, "Randomized search trees," Algorithmica, vol. 16, no. 4-5, pp. 464497, 1996.
[192] R. Seidel and M. Sharir, "Top-down analysis of path compression," SIAM Journal on Computing, vol. 34, no. 3, pp. 515-525, 2005.
[193] S. Sen and R. E. Tarjan, "Deletion without rebalancing in balanced binary trees," in Proc. ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 1490-1499, 2010.
[194] A. Shamir, "How to share a secret," Comm. of the ACM, vol. 22(11), pp. 612-613, 1979.
[195] M. Sipser, Introduction to the Theory of Computation. PWS Publishing Co., 1997.
[196] D. D. Sleator and R. E. Tarjan, "Amortized efficiency of list update and paging rules," Comm. ACM, vol. 28, pp. 202-208, 1985.
[197] D. D. Sleator and R. E. Tarjan, "Self-adjusting binary search trees," J. ACM, vol. 32, no. 3, pp. 652-686, 1985.
[198] D. K. Smith, "Dynamic programming and board games: A survey," European Journal of Operational Research, vol. 176, no. 3, pp. 1299-1318, 2007.
[199] D. A. Spielman and S.-H. Teng, "Smoothed analysis of algorithms: Why the simplex algorithm usually takes polynomial time," J. ACM, vol. 51, pp. 385-463, May 2004.
[200] G. A. Stephen, String Searching Algorithms. World Scientific Press, 1994.
[201] H. S. Stern, "American football," in Statistics in Sport (J. Bennett, ed.), Arnold, 1998.
[202] V. Strassen, "Gaussian elimination is not optimal," Numerische Mathematik, vol. 13, pp. 354356, 1969.
[203] R. Tamassia, ed., Handbook of Graph Drawing and Visualization. Chapman and Hall/CRC, 2013.
[204] R. Tarjan and U. Vishkin, "An efficient parallel biconnectivity algorithm," SIAM J. Comput., vol. 14, pp. 862-874, 1985.
[205] R. E. Tarjan, "Depth first search and linear graph algorithms," SIAM Journal on Computing, vol. 1, no. 2, pp. 146-160, 1972.
[206] R. E. Tarjan, "A class of algorithms which require nonlinear time to maintain disjoint sets," J. Comput. System Sci., vol. 18, pp. 110-127, 1979.
[207] R. E. Tarjan, Data Structures and Network Algorithms, vol. 44 of CBMS-NSF Regional Conference Series in Applied Mathematics. SIAM, 1983.
[208] R. E. Tarjan, "Amortized computational complexity," SIAM J. Algebraic Discrete Methods, vol. 6, no. 2, pp. 306-318, 1985.
[209] R. E. Tarjan and J. van Leeuwen, "Worst-case analysis of set union algorithms," J. ACM, vol. 31, pp. 245-281, Mar. 1984.
[210] J. van Leeuwen, "Graph algorithms," in Handbook of Theoretical Computer Science (J. van Leeuwen, ed.), vol. A. Algorithms and Complexity, pp. 525-632, Amsterdam: Elsevier, 1990.
[211] J. S. Vitter, Algorithms and Data Structures for External Memory. Foundations and Trends in Theoretical Computer Science, Hanover, MA: Now Publishers, 2008.
[212] J. S. Vitter and W. C. Chen, Design and Analysis of Coalesced Hashing. New York: Oxford University Press, 1987.
[213] J. Vuillemin, "A unifying look at data structures," Comm. ACM, vol. 23, pp. 229-239, 1980.
[214] S. Warshall, "A theorem on boolean matrices," Journal of the ACM, vol. 9, no. 1, pp. 11-12, 1962.
[215] K. Wayne, "A new property and a faster algorithm for baseball elimination," SIAM Journal on Discrete Mathematics, vol. 14, no. 2, pp. 223-229, 2001.
[216] J. W. J. Williams, "Algorithm 232: Heapsort," Comm. ACM, vol. 7, no. 6, pp. 347-348, 1964.
[217] D. Wood, Data Structures, Algorithms, and Performance. Reading, MA: Addison-Wesley, 1993.
[218] F. F. Yao, "Computational geometry," in Algorithms in Complexity (R. A. Earnshaw and B. Wyvill, eds.), pp. 345-490, Amsterdam: Elsevier, 1990.
[219] C. K. Yap, Fundamental Problems in Algorithmic Algebra. Oxford University Press, 1999.

